Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract By dissipating energy and generating mixing, internal tides (ITs) are important for the climatological evolution of the ocean. Our understanding of this class of ocean variability is however hindered by the rarity of observations capable of capturing ITs with global coverage. The data provided by the Global Drifter Program (GDP) offer high temporal resolution and quasi-global coverage, thus bringing promising perspectives. However, due to their inherent drifting nature, these instruments provide a distorted view of the IT signal. By theoretically rationalizing this distortion and leveraging a massive synthetic drifter numerical simulation, we propose a global metric converting semi-diurnal IT energy levels from GDP data to levels comparable to Eulerian datasets (two numerical simulations, and a satellite altimetry IT atlas). We find that the simulation with a dedicated focus on IT representation is the one where the converted Lagrangian levels perform best. This supports renewed efforts in the concurrent numerical modeling of ITs/ocean circulation. The substantial deficit of energy in the IT atlas highlights the inability for altimetric estimates to measure incoherent and fine-scale ITs and strongly supports the need to isolate ITs signature in the data collected by the new wide-swath altimetry mission SWOT.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Motivated by previous work on kinetic energy cascades in the ocean, atmosphere, plasmas, and other fluids, we develop a spatiotemporal spectral transfer tool that can be used to study scales of variability in generalized dynamical systems. In particular, we use generalized time-frequency methods from signal analysis to broaden the applicability of frequency transfers from theoretical to practical fluids applications such as the study of observational data or simulation output. We also show that triad interactions in wavenumber used to study kinetic energy and enstrophy cascades can be generalized to study triad interactions in frequency or wavenumber frequency. We study the effects of sweeping on the locality of frequency transfers and frequency triad interactions to better understand the locality of spatiotemporal frequency transfers. As an illustrative example, we use the spatiotemporal spectral transfer tool to study the results of a simulation of two-dimensional homogeneous isotropic turbulence. This simulated fluid is forced at a well-defined wavenumber and frequency with dissipation occurring at both large and small scales, making this one of the first studies of “modulated turbulence” in two dimensions. Our results show that the spatiotemporal transfers we develop in this paper are robust to potential practical problems such as low sampling rates or nonstationarity in time series of interest. We anticipate that this method will be a useful tool in studying scales of spatiotemporal variability in a wide range of fluids applications as higher resolution observations and simulations of fluids become more widely available. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract The decomposition of oceanic flow into its geostrophically balanced and unbalanced motions carries theoretical and practical significance for the oceanographic community. These two motions have distinct dynamical characteristics and affect the transport of tracers differently from one another. The launch of the Surface Water and Ocean Topography (SWOT) satellite provides a prime opportunity to diagnose the surface balanced and unbalanced motions on a global scale at an unprecedented spatial resolution. Here, we apply dynamic‐mode decomposition (DMD), a linear‐algebraic data‐driven method, to tidally‐forced idealized and realistic numerical simulations at submesoscale‐permitting resolution and one‐day‐repeat SWOT observations of sea‐surface height (SSH) in the Gulf Stream downstream of Cape Hatteras, a region commonly referred to as the separated Gulf Stream. DMD is able to separate out the spatial modes associated with sub‐inertial periods from super‐inertial periods. The sub‐inertial modes of DMD can be used to extract geostrophically balanced motions from SSH fields, which have an imprint of internal gravity waves, so long as the data extends long enough in time. We utilize the statistical relation between relative vorticity and strain rate as the metric to gauge the extraction of geostrophy.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The Ocean Foundation’s Ocean Science Equity Initiative—EquiSea—was founded in 2022 to address systemic inequities in ocean science capacity and opportunities. It provides financial support for projects, coordinates capacity development activities, fosters collaboration and co-financing of ocean science, and supports the development of low-cost ocean science technologies. The EquiSea strategic framework was co-developed with input from more than 200 ocean science practitioners in more than 35 countries. The authors of this article are those who played the most active roles in EquiSea’s development.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on horizontally rotational modes (such as eddies) is introduced and tested. At lower resolutions with horizontal grid spacings of 2 km, the modeled IW dissipation from numerical model agrees reasonably well with observations in some cases when the restricted form of horizontal viscosity is used. This suggests the possibility that if restricted forms of horizontal viscosity are adopted by global models with similar resolutions, they could be used to diagnose and map IW dissipation distributions. At higher resolutions with horizontal grid spacings of ∼250 m, the dissipation from vertical shear and horizontal viscosity act much more strongly resulting in dissipation overestimates; however, the vertical‐shear dissipation itself is found to agree well with observations.more » « less
-
Abstract Through interactions with the continental margins, incident low‐mode internal tides (ITs) can be reflected, scattered to high modes, transmitted onto the shelf and dissipated. We investigate the fate of remotely generated mode‐1 ITs in the U.S. West Coast (USWC) continental margin using two 4‐km horizontal resolution regional simulations. These 1‐year long simulations have realistic stratification, and atmospheric, tidal, and sub‐tidal forcings. In addition, one of these simulations has remote internal wave (IW) forcing at the open boundaries while the other does not. To compute the IT reflectivity of the USWC margin, we separate the IT energy fluxes into onshore and offshore propagating components using a Discrete Fourier Transform in space and time. Overall, ∼20% of the remote mode‐1 semidiurnal IT energy fluxes reflect off the USWC margin, 40% is scattered to modes 2–5, and 7% is transmitted onto the shelf while the remaining is dissipated on the continental slope. Furthermore, our results reveal that differences in stratification, slope criticality, topographic roughness and angle of incidence cause these fractions to vary spatially and temporally along the USWC margin. However, there is no clear seasonal variability in these estimates. Remote IWs enhance the advection and diffusion of heat in the continental margin, resulting in cooling at the surface and warming at depth, and a reduction in the thermocline stratification. These results suggest that low‐mode ITs can cause water mass transformation in continental margins that are far away from their generation sites.more » « less
-
Abstract It is generally understood that the origin of ocean diapycnal diffusivity is primarily associated with the stratified turbulence produced by breaking internal (gravity) waves (IW). However, it requires significant effort to verify diffusivity values in ocean general circulation models in any particular geographical region of the ocean due to the scarcity of microstructure measurements. Recent analyses of downscaled IW fields from an internal‐wave‐admitting global ocean simulation into higher‐resolution regional configurations northwest of Hawaii have demonstrated a much‐improved fit of the simulated IW spectra to the in‐situ profiler measurements such as the Garrett‐Munk (GM) spectrum. Here, we employ this dynamically downscaled ocean simulation to directly analyze the nature of the IW‐breaking and the wave‐turbulence cascade in this region. We employ a modified version of the Kappa Profile Parameterization (KPP) to infer what the horizontally averaged vertical profile of diapycnal diffusivity should be, and compare this to the background profile that would be employed in the ocean component of a low‐resolution coupled climate model such as the Community Earth System Model (CESM) of the US National Center for Atmospheric Research (NCAR). In pursuing this goal, we also demonstrate that the wavefield in the high‐resolution regional domain is dominated by a well‐resolved spectrum of low‐mode IWs that are predictable by solving an appropriate eigenvalue problem for stratified flow. We finally suggest a new tentative approach to improve the KPP parameterization.more » « less
-
Abstract The decay of the low‐mode internal tide due to the superharmonic energy cascade is investigated in a realistically forced global Hybrid Coordinate Ocean Model simulation with 1/25° (4 km) horizontal grid spacing. Time‐mean and depth‐integrated supertidal kinetic energy is found to be largest near low‐latitude internal tide generation sites, such as the Bay of Bengal, Amazon Shelf, and Mascarene Ridge. The supertidal kinetic energy can make up to 50% of the total internal tide kinetic energy several hundred kilometers from the generation sites. As opposed to the tidal flux divergence, the supertidal flux divergence does not correlate with the barotropic to baroclinic energy conversion. Instead, the time‐mean and depth‐integrated supertidal flux divergence correlates with the nonlinear kinetic energy transfers from (sub)tidal to supertidal frequency bands as estimated with a novel coarse‐graining approach. The regular spaced banding patterns of the surface‐intensified nonlinear energy transfers are attributed to semidiurnal mode 1 and mode 2 internal waves that interfere constructively at the surface. This causes patches where both surface tidal kinetic energy and nonlinear energy transfers are elevated. The simulated internal tide off the Amazon Shelf steepens significantly near these patches, generating solitary‐like waves in good agreement with Synthetic Aperture Radar imagery. Globally, we find that regions of high supertidal energy flux also show a high correlation with observed instances of internal solitary waves.more » « less
An official website of the United States government
